EI SEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis of new oxathiazinane dioxides and their in vitro cancer cell growth inhibitory activity

Françoise Borcard ^a, Matthias Baud ^a, Claudia Bello ^a, Giovanna Dal Bello ^b, Francesco Grossi ^b, Paolo Pronzato ^b, Michele Cea ^c, Alessio Nencioni ^c, Pierre Vogel ^a,*

ARTICLE INFO

Article history:
Received 5 June 2009
Revised 3 September 2009
Accepted 4 September 2009
Available online 10 September 2009

Keywords: Benzyl ethers Cancer Cytotoxicity Oxasultams Sultams

ABSTRACT

New oxathiazinane dioxides have been derived from D- and L-serine and tested for their in vitro cell growth inhibitory activity toward SKBR3 breast cancer cells. (5R)-5-(4-(4'-Bromomethyl)phenyl)benzyl-oxymethyl-[1,3,4]-oxathiazinane-3,3-dioxide showed a cytotoxicity of IC $_{50} \approx 10 \, \mu M$.

© 2009 Elsevier Ltd. All rights reserved.

Sultams (cyclic sulfonamides) have shown potent biological activity. ^{1,2} For instance, sultam (1) is an antileptic agent, ³ brinzolamide (2) has been used for the treatment of glaucoma, ⁴ ampiroxicam (3), ⁵ and S-2474 (4) are COX-2 inhibitors, ⁶ benzodithiazine dioxide 5 has both antiviral and anticancer activities, ⁷ derivative 6 is a selective calpain I inhibitor, ⁸ 7 inhibits the binding of MIP-3 β (macrophage inflammatory protein 3 β) to CCR7 receptor, ⁹ 8 inhibits mitotic kinesin KSP (anti-cancer), ¹⁰ 9 is a metalloprotease inhibitor (can be use to inhibit tumor metastasis), ¹¹ and 10 inhibits JAK kinase (can be used against solid and hematological malignancies such as leukemia and lymphomas). ¹² Aminobenzosultams have been found to be lipoxygenase inhibitors ¹³ and other cyclic sulfonamides are herbicides. ¹⁴

We report here the synthesis of new oxasultams of the type 5-hydroxymethyl-1,3,4-oxathiazinane-3,3-dioxide and disclose that some derivatives display in vitro growth inhibitory activity toward breast cancer (SKBR3) cell line. Our working hypothesis was that non-annulated oxathiazinane dioxides could imitate the polar moieties of anti-tumor compounds such as Edelfosine (11),¹⁵ jaspine B (12),¹⁶ or oleyl 2-acetamido-2-deoxy- α -D-glucopyranosides (e.g., 13),¹⁷ and that attaching a less polar side-chain through a 5-hydroxymethyl group could generate new cytotoxic agents.

Our scaffolds are chloromethanesulfonamide (R)-and (S)-**16** obtained from (R)- and (S)-**14**, both commercially available serine derivatives. Conversion of (R)-**14** into its methyl ester and subsequent reduction with LiAlH₄ in THF at 0 °C gave (R)-**15** in 94% and no epimerization (see below). Treatment of (R)-**15** with

^a Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), CH 1015 Lausanne, Switzerland

^b Italian National Cancer Institute, Genoa, Italy

^c Department of Internal Medicine, University of Genoa, Italy

^{*} Corresponding author. Tel.: +41 21 693 93 71; fax: +41 21 693 93 75. E-mail address: pierre.vogel@epfl.ch (P. Vogel).

CICH₂SO₂CI (1.2 equiv)/Et₃N (2 equiv) at 0 °C gave sulfonamide (R)-**16** in 63% yield. When stirred at 25 °C for several hours, (R)-**16** was converted into sultam (R)-**17**¹⁸ (isolated in 28%) and polymeric material. As this latter base-induced HCl elimination was sluggish we protected the sulfonamide with a 4-methoxybenzyl group applying standard conditions. Thus (R)-**16** was treated with PMBBr (1.1 equiv) and K₂CO₃ (3 equiv) in DMF at 20 °C giving (R)-**18** in 73% yield. Heating (R)-**18** with Cs₂CO₃ (2 equiv) in DMF to 80 °C overnight produced sultam (R)-**19** (73%).

Hydrogenolysis of the benzyl ether moiety with $H_2/Pd-C$ (H-Cube, 50 °C, 30 bar) gave (R)-**20** (85%). The latter alcohol displaced para-phenylbenzyl bromide in the presence or 50% aqueous NaOH and Bu_4NI/CH_3CN at 20 °C furnishing (R)-**21** (65%). Selective hydrolysis of the PMB ether was induced with CF_3COOH/CH_2Cl_2 at -5 °C giving (R)-**22** (68%). Similarly (R)-**20** reacted with 4,4′-bis(bromomethyl)biphenyl in excess to give (R)-**23** that was deprotected into (R)-**24**¹⁹ (Scheme 1).

N-Benzyl derivatives were prepared as shown in Scheme 2. Treatment of (R)-16 with BnBr/K₂CO₃/DMF at 23 °C gave a crude N-benzvlsulfonamide that was heated to 80 °C in DMF containing 2 equiv of Cs_2CO_3 . This provided sultam (R)-25 in 45% (two steps). Selective hydrogenolysis of the benzyl ether moiety (H-Cube, EtOH, 45 °C, 40 bar) gave alcohol (R)-**26** (74%).²⁰ Debenzylation of (R)-**26** into (R)-27 was very sluggish. On increasing H₂ pressure to 50 bar, no more than 10% of (R)-27 was obtained. The latter was converted into oleyl ether (R)-28 (34%) by reaction with oleyl methanesulfonate in excess at 23 °C (Bu₄NI 1 equiv, 50% aq NaOH, 15 h), into 4-fluorobenzyl ether (R)-29 (86%) by reaction with 4-FC₆H₄CH₂Br (same conditions), into 3-methoxybenzyl ether (*R*)-**30** (68%) by reaction with 3-MeOC₆H₄CH₂Br (as above) and into benzoate (R)-31 (73%) by reaction with BzCl in CH₂Cl₂ containing 2 equiv of DMAP (4dimethylaminopyridine). Benzylamine derivative (R)-32 (20%, two steps) was prepared by converting first alcohol (R)-26 into its mesylate (MeSO₂Cl/Et₃N/CH₂Cl₂, 0 °C, 90 min) and reaction of the latter (crude) with an excess of benzylamine (MeCN, 60 °C, 15 h).

A number of *N*-methyl sultams were also prepared as shown in Scheme 3. Sulfonamide (R)-**16** was N-methylated first with Mel/ K_2CO_3/DMF (23 °C, 10 h) and then treated with Cs_2CO_3/DMF

(80 °C, 15 h) to give sultam (*R*)-**33** (48%, two steps). Hydrogenolysis of the benzyl ether (H-Cube, Pd-C/EtOH, 30 bar, 45 °C) provided alcohol (*R*)-**34**²¹ in 85% yield. It was converted into its (*Z*)-oleyl ether (*R*)-**35** (57%), 4-phenylbenzyl ether (*R*)-**36** (52%) and β-naphthylmethyl ether (*R*)-**37** (75%) by treatment with (*Z*)-oleyl methanesulfonate (Bu₄NI, 50% aq NaOH, 23 °C, 15 h), with 4-PhC₆H₄CH₂Br (Bu₄NI, MeCN, 50% aq NaOH, 23 °C, 15 h) and with 2-bromomethyl-naphthalene (Bu₄NI, 50% aq NaOH, 23 °C, 15 h), respectively.

As we found that oxasultams (R)-17 and (R)-24 inhibited the growth of breast cancer cells (see below), we decided to prepare also a few (S)-derivatives. Thus following the route shown in Scheme 1, (2S)-2-amino-3-benzyloxypropane-1-ol ((S)-15) was treated with ClCH $_2$ SO $_2$ Cl/Et $_3$ N in CH $_2$ Cl $_2$ to generate the corresponding sulfonamide (S)-16. On staying with Et $_3$ N polymerization occurred together with the formation of (S)-17 (33%). N-Benzylation of (S)-16 followed by treatment with Cs $_2$ CO $_3$ /DMF gave (S)-25 (45%, two steps). Selective hydrogenolysis of the benzyl ether of (S)-25 furnished alcohol (S)-26 that was converted into oleyl ether (S)-28. Protection of the sulfonamide group in (S)-16 with PMB followed by treatment with Cs $_2$ CO $_3$ /DMF and selective hydrogenolysis of the benzyl group gave (S)-20. Alcohol (S)-20 was transformed into 4-(4-bromomethylphenyl)benzyl ether (S)-23 that was deprotected into (S)-24.

Mosher's ester of (R)-**26** and (S)-**26** obtained by reaction with (R)-(-)- α -methoxy- α -trifluoromethylacetyl chloride²² gave esters with 98% and 95% ee, respectively (by $^{13}C^{-19}F$ satellites), thus demonstrated that less than 2.5% of our compounds have been epimerized.

Compounds (R)-17, (S)-17, (R)-22, (R)-24, (S)-24, (R)-25, (S)-25, (R)-28, (S)-28, (R)-29, (R)-30, (R)-31, (R)-33, (R)-35, (R)-36, and (R)-37 were submitted to the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)/PMS(phenazine methosulfate: 5-methylphenazinium methylsulfate) assay to determine this inhibitory of the cell growth of SKBR3 cancer cells (breast cancer). Table 1 summarized our results and Figures 1 and 2 show concentration depending viability for selected oxasultams. The best cell growth inhibitory activities were observed for the free sulfonamides (no N-substituents). Interestingly (S)-17 (5-benzyloxymethyl derivative) is slightly more active than its enantiomer (R)-17 while (S)-24 exhibits similar potency as its enantiomer (R)-24. These results suggest that the absolute configuration does not play a crucial role in the mode of action of these compounds. N-substitution of the oxasultams by benzyl or methyl

$$\begin{array}{c} \text{OH} \\ \text{H}_2\text{N} \\ \text{OH} \\ \text{OBn} \\ \text{(R)$-14} \\ \text{($R$)$-14} \\ \text{(R)$-16} \\ \begin{array}{c} \text{Et}_3\text{N} \\ \text{(94%)} \\ \text{OS} \\ \text{(94%)} \\ \text{(R)$-17} \\ \text{($R$)$-18} \\ \text{(R)$-18} \\ \text{($R$)$-18} \\ \text{(R)$-20°C} \\ \text{($R$)$-20} \\ \text{(R)$-20°C} \\ \text{($R$)$-24 $R1 = H, $R2 = Br } \\ \text{($R$)$-23 $R1 = H, $R2 = Br } \\ \text{($R$)$-24 $R1 = H, $R2 = Br } \\ \text{($R$)$-26 $R2 = Br } \\ \text{($R$)$-27 $R2 = H, $R2 = H } \\ \text{($R$)$-28 $R2 = H, $R2 = H,$$

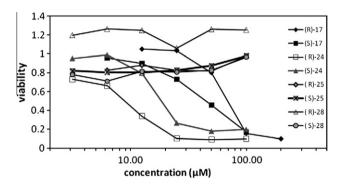
Scheme 1. Synthesis of benzyl- and (5*R*)-5-arylmethyloxymethyl[1,3,4]oxa-thiazinane-3,3-dioxides.

$$(R) - 16 \quad \underbrace{ \begin{array}{c} 23^{\circ}\text{C} \\ 2.\text{ Cs}_2\text{CO}_3/\text{DMF} \\ 80^{\circ}\text{C} \text{ (45\%, 2 steps)} \end{array}}_{\text{S} = \text{O}} \quad \underbrace{ \begin{array}{c} \text{Bn} \\ \text{N} \\ \text{S} = \text{O} \\ \text{N} \\ \text{S} = \text{O} \\ \text{P} - 26 \\ \hline \\ (R) - 27 \\ \hline \\ (R) - 28 \\ \hline \\ (R$$

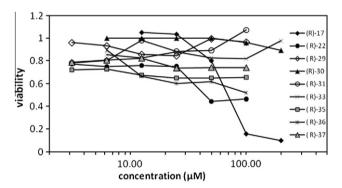
Scheme 2. Preparation of (5R)-4-benzyl-5-oxy- and -aminomethyl[1,3,4]oxathiazinane-3,3-dioxide derivatives.

(R)-16
$$\frac{1. \text{ Mel/K}_2\text{CO}_3, \text{ DMF}}{2. \text{ Cs}_2\text{CO}_3, \text{ DMF}} \\ 80^{\circ}\text{C (48\%, 2 steps)}$$
(R)-33 $\text{R}^2 = \text{Bn}$
(R)-34 $\text{R}^2 = \text{H}$
(R)-35 $\text{R}^2 = \text{C}$
(R)-36 $\text{R}^2 = \text{C}$
(R)-37 $\text{R}^2 = \text{C}$
(R)-37 $\text{R}^2 = \text{C}$
(R)-37 $\text{R}^2 = \text{C}$

Scheme 3. Preparation of (5*R*)-4-methyl-5-oxymethyl[1,3,4]oxathiazinane-3,3-dioxide derivatives


group leads to lower inhibitory activity. The best compounds in our series are the two (4-bromomethylphenyl)-4-benzyloxymethyl derivatives (R)-24 and (S)-24 with a IC50 value of ca. 10 μ M. Contrary to our initial working hypothesis (R)- and (S)-28 with the long alkyl chain (oleyl) are not cytotoxic. The potential alkylation properties of (R)-24 and (S)-24 could be responsible of their cytotoxicity.

This work presents new monocyclic oxasultams with potential anti-cancer activities. They are obtained readily from D- or L-serine and their structures can be diversified widely. This should open the possibility to obtain new leads as anti-tumor agents. Work is underway with this objective in mind. We are pursuing studies to establish the biological targets of these compounds.


Table 1Viability assays (MTS) on compounds (*R*)-**17**, (*S*)-**17**, (*R*)-**22**, (*R*)-**24**, (*S*)-**24**, (*R*)-**25**, (*S*)-**25**, (*R*)-**28**, (*S*)-**28**, (*R*)-**29**, (*R*)-**30**, (*R*)-**31**, (*R*)-**35**, (*R*)-**36**, and (*R*)-**37** toward SKBR3 (breast cancer) cell line

Product	%Viability				
	6.25 μM	12.5 μΜ	25 μΜ	50 μM	100 μΜ
(R)-17	100	100	100	80	16
(S)- 17	100	94	78	51	22
(R)-22	75	75	75	44	46
(R)-24	66	34	10	10	10
(S)- 24	99	81	26	18	20
(R)-25	89	82	88	83	82
(S)- 25	81	80	82	87	96
(R)-28	100	100	99	100	100
(S)-28	71	81	81	82	96
(R)-29	93	86	88	99	96
(R)-30	100	100	100	96	89
(R)-31	81	98	88	89	100
(R)-33	85	81	88	83	82
(R)-35	72	71	65	65	65
(R)-36	89	66	60	61	52
(R)- 37	81	82	73	74	74

Viability was determined after 72 h exposure.

Figure 1. Plot of viability versus concentration for compounds (*R*)-17, (*S*)-17, (*R*)-24, (*S*)-25, (*S*)-25, (*R*)-28, and (*S*)-28 toward SKBR3 (breast cancer) cell line. Viability was determined after 72 h exposure.

Figure 2. Plot of viability versus concentration for compounds (*R*)-17, (*R*)-22, (*R*)-29, (*R*)-30, (*R*)-31, (*R*)-33, (*R*)-35, (*R*)-36, and (*R*)-37 toward SKBR3 (breast cancer) cell line. Viability was determined after 72 h exposure. Data for (*R*)-17 appear again here as a reference.

Acknowledgments

We thank the Swiss National Science Foundation (Bern) for financial help. We also thank M. Rey, F. Sepúlveda, and L. Menin for technical help.

Supplementary data

Experimental details and spectroscopic characterization of new compounds are available. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2009.09.019.

References and notes

- 1. Jiménez-Hopkins, M.; Hanson, P. R. Org. Lett. 2008, 10, 2223.
- 2. Hanessian, S.; Sailes, H.; Therrien, E. Tetrahedron 2003, 59, 7047.

- 3. Tanimukai, H.; Inui, M.; Hariguchi, S.; Kaneko, Z. Biochem. Pharmacol. 1965, 14, 961.
- 4. Wroblewski, T.; Graul, A.; Castaner, J. Drugs Future 1998, 23, 365.
- 5. Rabasseda, X.; Hopkins, S. J. Drugs Today 1994, 30, 557.
- Inagaki, M.; Tsuri, T.; Jyoyama, H.; Ono, T.; Yamada, K.; Kobayashi, M.; Hori, Y.; Arimura, A.; Yasui, K.; Ohno, K.; Kakudo, S.; Koizumi, K.; Suzuki, R.; Kato, M.; Kawai, S.; Matsumoto, S. J. Med. Chem. 2000, 43, 2040.
- Brzozowski, Z.; Saczewski, F.; Neamati, N. Bioorg. Med. Chem. Lett. 2006, 16, 5298.
- 8. Wells, G. J.; Tao, M.; Josef, K. A.; Bihovsky, R. J. Med. Chem. 2001, 44, 3488.
- Gladue, R. P.; Martin, W. H.; Poss. C. S. Eur. Patent Appl. 2002-253019, 20,020,429, 2002; Chem. Abstr. 2002, 137, 333146.
- Adams, N. D.; Darcy, M. G.; Dhanak, D.; Duffy, K. J.; Fitch, D. M.; Knight, S. D.; Newlander, K. A.; Shaw, A. N. PCT Int. Appl. WO2006113432, 2006; *Chem. Abstr.* 2006, 145, 438652.
- Gege, C.; Schneider, M.; Chevrier, C.; Deng, H.; Sucholeiki, I.; Gallagher, B. M., Jr.; Bosies, M.; Steeneck, C.; Wu, X.; Hochguertel, M.; Nolte, B.; Taveras, A. PCT Int. Appl. WO2008063668, 2008; *Chem. Abstr.* 2008, 149, 10034.
- Li, H.; Argade, A.; Thota, S.; Carroll, D.; Sran, A.; Cooper, R.; Singh, R.; Tso, K.; Bhamidipati, S. PCT Int. Appl. WO2008049123, 2008; *Chem. Abstr.* 2008, 148, 472065.
- Nakane, M.; Satake, K.; Ando, K.; Wakabayashi, H. Jpn. Kokai Tokkyo Koho Pat. Appl. JP80-2495535, 1992; Chem. Abstr. 1992, 117, 191879.
- Kamireddy, B.; Murray, W. M. PCT Int. Appl. WO9533746 A1 19951214, 1995; Chem. Abstr. 1996, 124, 232492.
- (a) Busto, J. V.; Sot, J.; Goñi, F. M.; Mollinedo, F.; Alonso, A. Biochim. Biophys. Acta 2007, 1768, 1855; (b) Gajate, C.; Mollinedo, F. Curr. Drug Metab. 2002, 3, 491; (c) Mollinedo, F.; Fernández-Luna, J. L.; Gajate, C.; Martín-Martín, B.; Benito, A.; Martínez-Dalmau, R.; Modotell, M. Cancer Res. 1997, 57, 1320; (d) Mollinedo, F.; Gajate, C.; Martín-Santamaria, S.; Gago, F. Curr. Med. Chem. 2004, 11, 3163; (e) Nieto-Miguel, T.; Gajate, C.; Mollinedo, F. J. Biol. Chem. 2006, 281, 14833.
- (a) Canals, D.; Mormeneo, D.; Fabriàs, G.; Llebaria, A.; Casas, J.; Delgado, A. Bioorg. Med. Chem. 2009, 17, 235; (b) Ledroit, V.; Debitus, C.; Lavaud, C.;

- Massiot, G. *Tetrahedron Lett.* **2002**, *44*, 225; (c) Vasta, V.; Meacci, E.; Catarzi, S.; Donati, C.; Farnararo, M.; Bruni, P. *Biochim. Biophys. Acta* **2000**, *1483*, 154; (d) Meacci, E.; Vasta, V.; Moorman, J. P.; Bobak, D. A.; Bruni, P.; Moss, J.; Vaughan, M. *J. Biol. Chem.* **1999**, *274*, 18605; (e) Klionsky, D. J.; Cuervo, A. M.; Seglen, P. O. *Autophagy* **2007**, *3*, 181.
- (a) García-Alvarez, I.; Corrales, G.; Doncel-Pérez, E.; Muñoz, A.; Nieto-Sampedro, M.; Fernandez-Mayoralas, A. J. Med. Chem. 2007, 50, 364; (b) García-Alvarez, I.; Garrido, L.; Doncel-Pérez, E.; Nieto-Sampedro, M.; Fernández-Mayoralas, A. J. Med. Chem. 2009, 52, 1263; (c) López-Donaire, M. L.; Parra-Caceres, J.; Vázquez-Lasa, B.; García-Alvarez, L.; Fernández-Mayoralas, A.; López-Bravo, A.; San Roman, J. Biomaterials 2009, 30, 1613.
- A.; López-Bravo, A.; San Roman, J. Biomaterials **2009**, *30*, 1613.

 18. Data of(R)-**17**: $|a|_{405}^{25} = -6 (c 0.06, \text{CHCl}_3); \, ^1\text{H NMR} (400 \text{ MHz}, \text{CDCl}_3); \, \delta_{\text{H}}; \, 7.38 7.32 \, (\text{m}, \, 4\text{H}), \, 5.09 \, (\text{d}, \, ^3J = 8.9, \, 1\text{H}), \, 4.57 4.49 \, (\text{m}, \, 4\text{H}), \, 3.91 \, (\text{m}, \, 1\text{H}), \, 3.75 \, (\text{m}, \, 3\text{H}), \, 3.63 \, (\text{m}, \, 1\text{H}); \, ^{13}\text{C NMR} (100 \, \text{MHz}, \, \text{CDCl}_3); \, \delta_{\text{C}}; \, 137.0 \, (\text{s}), \, 128.6, \, 128.1, \, 127.8 \, (3\text{d}), \, 73.6, \, 69.1, \, 56.5 \, (3\text{t}), \, 55.1 \, (\text{d}), \, 44.8 \, (6).$
- 19. $Data\ of\ (R)$ -**24**: $|\alpha|_{405}^{25} = -20\ (c\ 0.06,\ CHCl_3)$; $^1H\ NMR\ (400\ MHz,\ CDCl_3)$: δ_H : 7.35–7.61 (m, 8H), 4.76 (m, 2H), 4.58 (m, 4H), 4.45 (d, 3J = 11.6, 1H), 4.04 (m, 1H), 3.98 (dd, 3J = 12.2, 3.1, 1H), 3.73 (br t, 3J = 14.4, 1H), 3.63 (m, 2H); $^{13}C\ NMR\ (100\ MHz,\ CDCl_3)$: δ_C : 140.7, 140.6, 137.0, 136.1 (4s), 129.5, 129.2, 129.1, 128.4, 127.5, 127.4, 127.3, 127.2 (8d), 82.0, 73.4, 68.9, 68.0 (4t), 56.4 (d), 33.2 (t). 20. $Data\ of\ (R)$ -**26**: $|\alpha|_{405}^{25} = 20\ (c\ 0.05,\ CHCl_3)$. $^1H\ NMR\ (400\ MHz,\ CDCl_3)$: δ_H : 7.38–
- 20. $Data \ of (R)$ -**26**: $[\alpha]_{405}^{25} = 20 \ (c \ 0.05, CHCl_3)$. $^1H \ NMR \ (400 \ MHz, CDCl_3)$: δ_H : 7.38–7.33 (m, 4H, H arom.) 4.69 (d, $^2J = 11.3$, 1H, HHC(2)) 4.67 (d, $^2J = 14.8$, 1H, N-CHH-Ph) 4.55 (d, $^2J = 11.3$, 1H, HHC(2)) 4.31 (d, $^2J = 14.8$, 1H, N-CHH-Ph) 4.04 (m, 1H, $CH_2-C(5)$), 3.97 (m, 1H, $H_2C(7)$) 3.91 (dd, $^2J = 12.4$, $^3J = 1.9$, 1H, HHC(6)) 3.58 (dd, $^2J = 12.4$, $^3J = 3.0$, 1H, HHC(6)) 3.41 (m, 1H, CH-N) 2.42 (s, 1H, OH). ^{13}C NMR (100 MHz, $CDCl_3$): δ_C : 135.68 (s, C arom.) 128.86 (d, $^1J = 161.3$, CH arom.) 128.50 (d, $^1J = 157.6$, CH arom.) 128.23 (d, $^1J = 167.0$, CH arom.) 82.57 (t, $^1J = 144.8$, C(2)) 66.29 (t, $^1J = 146.4$, C(7) or $CH_2(6)$) 60.50 (d, $^1J = 140.3$, C(5)) 60.10 (t, $^1J = 145.0$, C(7) or $CH_2(6)$) 50.39 (t, $^1J = 140.3$, $N-CH_2-Ph$).
- 21. $Data\ of\ (R)$ -34: $|z|_{405}^{25} = -34\ (c\ 0.06,\ CHCl_3);\ ^1H\ NMR\ (400\ MHz,\ CDCl_3);\ \delta_H;\ 4.60\ (m,\ 2H),\ 4.06\ (dd,\ ^3J=11.6,\ 6.5,\ 1H,\ 3.94\ (m,\ 3H),\ 3.61\ (m,\ 1H),\ 2.96\ (s,\ 3H).$
- 22. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.